
GamePlay.c

Pseudocode for the GamePlay Module (a service that implements a state

machine)

Data private to the module: CurrentState, HighScore, MyPriority

InitGamePlay

The parameter for this function is the priority, an unsigned integer

Initialize tot sense pin to digital input

Initialize solenoid pin to output, low

Set MyPriority to Priority passed in

Set Current State to InitPState

Call ResetGame

Call ActuateSolenoid

Set HighSchore to 0

Post ES_INIT event to self

PostGamePlay

The parameter for this function is of type ES_EVENT

Call ES_PostToService with MyPriority and the event passed in

RunGamePlay

The parameter for this function is of type ES_EVENT

Run one of the following blocks of code based on the value of

CurrentState:

If CurrentState is InitPState:

If the passed in event is WATERDB_ButtonDown:

Set CurrentState to ReadyForTot

Start the WELCOME_TIMER with the WELCOME_TIME

If CurrentState is Ready4Tot:

If the passed in event is TOTIn:

Set CurrentState to Playing

Post GAME_START event to all services

Start GAME_TIMER with LENGTH_OF_GAME time

Start USER_ACTIVE_TIMER with USER_ACTIVE_TIME

Turn off all LED strips

If the passed in event is ES_TIMEOUT for SOLENOID_TIMER:

Call ActuateSolenoid

If the passed in event is ES_TIMEOUT for WELCOME_TIMER:

On the first call, initialize CurrentWelcome to 0

Increment CurrentWelcome by 1

Set CurrentWelcome to mod3 of CurrentWelcome

Turn the CurrentWelcome number of LED strip on

On the first call, set CornPulse to 600

Increment CornPulse by 200

Set CornPulse to mod2400 of CornPulse

Set the PWM of each Corn Channel to CornPulse

Set the WELCOME_TIMER to WELCOME_TIME

If the passed in event is HIGH_SCORE:

If the event param is greater than saved HighScore:

Set HighScore to the event param

Create a new ES_EVENT of type HIGH_SCORE

Set the new event param to be the saved HighScore

Post the HighScore to the SevSeg service

If CurrentState is Playing:

If the event is ES_TIMEOUT for the GAME_TIMER:

Create a GAME_END event

Post the GAME_END event to GameClock and AudioService

Start the CELEBRATION_TIMER with CELEBRATION_TIME

Set CurrentState to Celebrating

Start the WELCOME_TIMER with WELCOME_TIME

Else if the event is ES_TIMEOUT for the USER_ACTIVE_TIMER:

Call ResetGame

Set CurrentState to Ready4Tot

Start the WELCOME_TIMER with WELCOME_TIME

Else if the Event is WATERDB_ButtonDown:

Restart the USER_ACTIVE_TIMER with USER_ACTIVE_TIME

Create a WATER_CORN event

Set the event parameter to QueryLaneSelectionFSM

Post the event to the CornPop service

Else if the Event is FIREDB_ButtonDown:

Restart the USER_ACTIVE_TIMER with USER_ACTIVE_TIME

Create an ALIEN_BLAST event

Set the event parameter to QueryLaneSelectionFSM

Post the event to the AlienFSM and Audio services

Else if the Event is LEVERDB_ButtonDown:

Restart the USER_ACTIVE_TIMER with USER_ACTIVE_TIME

If CurrentState is Celebrating:

If the event is ES_TIMEOUT of the CELEBRATION_TIMER:

Call ResetGame

Set CurrentState to Ready4Tot

Start WELCOME_TIMER with WELCOME_TIME

Else if the event is ES_TIMEOUT of the WELCOME_TIMER:

On the first call, initialize CurrentWelcome to 0

Increment CurrentWelcome by 1

Set CurrentWelcome to mod3 of CurrentWelcome

Turn the CurrentWelcome number of LED strip on

Create a BLINK event and post it to SevSeg service

QueryGamePlay

Return CurrentState

ResetGame

Call ActuateSolenoid

Start the SOLENOID_TIMER with SOLENOID_TIME

Create a GAME_RESET event and post it to all services

ActuateSolenoid

On the first call, initialize SolenoidState to 0

Set SolenoidState to the logical Not of its previous value

If Solenoid state is 0:

Turn the solenoid off by setting the pin low

Else:

Turn the solenoid on by setting the pin high

AlienFSM.c

Pseudocode for the state machine controlling all three aliens

Data private to the module: Alien1State, Alien2State, Alien3State,

MyPriority

InitAlienFSM

Takes as parameter an integer representing the service priority.

Set MyPriority to the priority parameter.

Set Alien1State, Alien2State, and Alien3State to Off

Call AlienClearAll

Post ES_INIT event to self

PostAlienFSM

Takes an event as a parameter.

Post input event to ES service with priority of MyPriority.

RunAlienFSM

Takes an Event as a Parameter.

If the input event is an ALIEN_BLAST:

If the event parameter is LaneOne:

Call AlienWrite on Alien1 with parameter 0

Stop ALIEN_1_TIMER

Set Alien1State to FullUp

Else if the event parameter is LaneTwo:

Call AlienWrite on Alien2 with parameter 0

Stop ALIEN_2_TIMER

Set Alien2State to FullUp

Else if the event parameter is LaneThree:

Call AlienWrite on Alien3 with parameter 0

Stop ALIEN_3_TIMER

Set Alien3State to FullUp

Else if the input event is GAME_START:

Set Alien1State, Alien2State, and Alien3State to FullUp

Call AlienWrite for all three aliens, with paramter 0

Else if the input event is GAME_RESET:

Call AlienClearAll

Else if the input event is GAME_END:

Set Alien1State, Alien2State, and Alien3State to Off

Else if the input event is ES_TIMEOUT from EAT_CORN_TIMER:

Create a SCORE_DECR event and ALIEN_CONTACT event

For each AlienState in FullDown:

Post the SCORE_DECR event to SevSeg service

Post the ALIEN_CONTACT event to CornPop service

Reinitialize the EAT_CORN_TIMER with EATING_RATE time

Else:

Execute one of the following blocks of code based on

Alien1State:

If Alien1State is FullUp:

If the event is ALIEN_ATTACK with param LaneOne:

Call AlienWrite for Alien1 with param 1

Init ALIEN_1_TIMER with ALIEN_DROP_TIME

Set Alien1State to Down1

If Alien1State is Down1:

If the event is ES_TIMEOUT for ALIEN_1_TIMER:

Call AlienWrite for Alien1 with param 2

Init ALIEN_1_TIMER with ALIEN_DROP_TIME

Set Alien1State to Down2

If Alien1State is Down2:

If the event is ES_TIMEOUT for ALIEN_1_TIMER:

Call AlienWrite for Alien1 with param 3

Set Alien1State to FullDown

Post SCORE_DECR event to SevSeg service

Post ALIEN_CONTACT event to CornPop service

Init EAT_CORN_TIMER with EATING_RATE

Execute one of the following blocks of code based on

Alien2State:

If Alien2State is FullUp:

If the event is ALIEN_ATTACK with param LaneTwo:

Call AlienWrite for Alien2 with param 1

Init ALIEN_2_TIMER with ALIEN_DROP_TIME

Set Alien2State to Down1

If Alien2State is Down1:

If the event is ES_TIMEOUT for ALIEN_2_TIMER:

Call AlienWrite for Alien2 with param 2

Init ALIEN_2_TIMER with ALIEN_DROP_TIME

Set Alien2State to Down2

If Alien2State is Down2:

If the event is ES_TIMEOUT for ALIEN_2_TIMER:

Call AlienWrite for Alien2 with param 3

Set Alien2State to FullDown

Post SCORE_DECR event to SevSeg service

Post ALIEN_CONTACT event to CornPop service

Init EAT_CORN_TIMER with EATING_RATE

Execute one of the following blocks of code based on

Alien3State:

If Alien3State is FullUp:

If the event is ALIEN_ATTACK with param LaneThree:

Call AlienWrite for Alien3 with param 1

Init ALIEN_3_TIMER with ALIEN_DROP_TIME

Set Alien3State to Down1

If Alien3State is Down1:

If the event is ES_TIMEOUT for ALIEN_3_TIMER:

Call AlienWrite for Alien3 with param 2

Init ALIEN_1_TIMER with ALIEN_DROP_TIME

Set Alien3State to Down2

If Alien3State is Down2:

If the event is ES_TIMEOUT for ALIEN_1_TIMER:

Call AlienWrite for Alien3 with param 3

Set Alien3State to FullDown

Post SCORE_DECR event to SevSeg service

Post ALIEN_CONTACT event to CornPop service

Init EAT_CORN_TIMER with EATING_RATE

AlienWrite

First parameter is the Alien number, second parameter is the

desired position

Execute one of the following blocks of code based on Alien

number:

Alien1:

Pull all Alien1 pins low

Set the input position of Alien1 pin high

Alien2:

Pull all Alien2 pins low

Set the input position of Alien2 pin high

Alien3:

Pull all Alien3 pins low

Set the input position of Alien3 pin high

AlienClearAll

Set all pins controlling aliens to low

SevSeg.c

Pseudocode for the service controlling the two seven segment displays

via encoders.

Data private to this module: MyPriority, CurrentScore, DisplayOn

InitSevSeg

Takes as parameter an integer representing the service priority.

Set MyPriority to input priority

Set CurrentScore to 0

Set DisplayOn to 0

Call WriteDisplay

Call WriteScore

Post ES_INIT event to self

PostSevSeg

Takes an event as a parameter.

Post input event to ES service with priority of MyPriority.

RunSevSeg

Takes an event as a parameter.

Execute exactly one of the following blocks of code based on the type

of event passed in:

Event is SCORE_INCR:

Add one to CurrentScore

Call WriteScore

Event is SCORE_DECR:

If CurrentScore is not 0:

Subtract one from CurrentScore

Call WriteScore

Event is GAME_START:

Set Current Score to 0

Call WriteScore

Set DisplayOn to 1

Call WriteDisplay

Event is GAME_RESET:

Create HIGH_SCORE event with param of CurrentScore

Post HIGH_SCORE event to GamePlay service

Set Current Score to 0

Call WriteScore

Set DisplayOn to 0

Call WriteDisplay

Event is BLINK:

Call Blink function

Event is HIGH_SCORE:

Set CurrentScore to event param

Call WriteScore

Set DisplayOn to 1

Call WriteDisplay

WriteScore

This function takes no input parameters.

If CurrentScore is greater than 99:

Set CurrentScore to 0

Initialize Score1 to CurrentScore mod 10

Initialize Score2 to the integer value of CurrentScore divided by 10

Clear the 4 bits controlling each seven seg decoder

Set the first sev seg decoder to the 4 bit value of Score1

Set the second sev seg decoder to the 4 bit value of Score2

WriteDisplay

This function takes no input parameters.

Set the sev seg display control pin to the value of DisplayOn.

Blink

This function takes no input parameters.

Set DisplayOn to the logical inverse of its previous value

Call WriteDisplay

CornPop.c

Pseudocode for a service that handles the position of the corn servos.

Data private to this module: MyPriority, CurrentCorn1Pulse,

CurrentCorn2Pulse, CurrentCorn3Pulse

InitCornPop

Takes as parameter an integer representing the service priority.

Set MyPriority to input priority

Set PWM groups controlling corn to a period of 20ms (25000 ticks)

Set CurrentCorn1Pulse, CurrentCorn2Pulse, CurrentCorn3Pulse to

SEED_PULSE

Set all corn servo pwm channel pulse widths to SEED_PULSE

Post ES_INIT event to self

PostCornPop

Takes an event as a parameter.

Post input event to ES service with priority of MyPriority.

RunCornPop

Takes an event as a parameter

Initialize update var as (HARVEST_PULSE-SEED_PULSE)/ PUMPS_TO_GROW

Execute one of the following block of code based on input event type:

If GAME_RESET:

Set CurrentCorn1Pulse, CurrentCorn2Pulse,

CurrentCorn3Pulse to SEED_PULSE

Set all corn servo pwm channel pulse widths to SEED_PULSE

If GAME_START:

Set CurrentCorn1Pulse, CurrentCorn2Pulse,

CurrentCorn3Pulse to SEED_PULSE

Set all corn servo pwm channel pulse widths to SEED_PULSE

If ALIEN_CONTACT:

If Event Param is LaneOne:

Set CurrentCorn1Pulse to SEED_PULSE

Set pwm pulse width for corn 1 servo to SEED_PULSE

Else if Event Param is LaneTwo:

Set CurrentCorn2Pulse to SEED_PULSE

Set pwm pulse width for corn 2 servo to SEED_PULSE

Else if Event Param is LaneThree:

Set CurrentCorn2Pulse to SEED_PULSE

Set pwm pulse width for corn 2 servo to SEED_PULSE

If WATER_CORN:

If Event Param is LaneOne:

Add update to CurrentCorn1Pulse

If CurrentCorn1Pulse is greater than HARVEST_PULSE:

Set CurrentCorn1Pulse to SEED_PULSE

Post SCORE_INCR event to SevSeg service

Set corn 1 servo pwm pulse width to CurrentCorn1Pulse

Else if Event Param is LaneTwo:

Add update to CurrentCorn2Pulse

If CurrentCorn2Pulse is greater than HARVEST_PULSE:

Set CurrentCorn2Pulse to SEED_PULSE

Post SCORE_INCR event to SevSeg service

Set corn 2 servo pwm pulse width to CurrentCorn2Pulse

Else if Event Param is LaneThree:

Add update to CurrentCorn3Pulse

If CurrentCorn3Pulse is greater than HARVEST_PULSE:

Set CurrentCorn3Pulse to SEED_PULSE

Post SCORE_INCR event to SevSeg service

Set corn 3 servo pwm pulse width to CurrentCorn1Pulse

AlienAttacks.c

This state machine sets the random alien attacks in the game.

Data private to the module: CurrentState, MyPriority

InitAttack

Takes as parameter an integer representing the service priority.

Set MyPriority to priority passed in as a parameter

Set CurrentState to AttackOff

Post ES_INIT event to self

PostAttack

Takes an event as a parameter.

Post input event to ES service with priority of MyPriority.

RunAttack

Takes an event as a parameter.

If CurrentState is AttackOff and event type is GAME_START:

Set CurrenState to PlottingAttack

Create a variable AttackTime

Set AttackTime to ((random integer mod ATTACK_RATE)+1)*1000

Start ATTACK_TIMER with AttackTime

Else if CurrentState is PlottingAttack:

If event is ES_TIMEOUT of ATTACK_TIMER:

Initialize NumAttacks as a random integer mod 3

Repeat the following NumAttacks times:

Initialize AlienN as a random integer mod 3, + 1

Create an ALIEN_ATTACK event with param AlienN

Post the ALIEN_ATTACK event to AlienFSM service

End repeat

Set AttackTime to ((random integer mod

ATTACK_RATE)+1)*1000

Start ATTACK_TIMER with AttackTime

Else if event is GAME_RESET:

Stop ATTACK_TIMER

Set CurrentState to AttackOff

GameClock.c

Pseudocode for the GameClock module, which controls the game clock

servo.

Data private to this module: MyPriority, CurrentPulseWidth

InitGameClock

Takes as parameter an integer representing the service priority.

Set MyPriority to input priority

Set CurrentPulseWidth to GAME_START_PULSE

Set pulse width of pwm channel for GameClock servo to

GAME_START_PULSE

Post ES_INIT event to self

PostGameClock

Takes an event as a parameter.

Post input event to ES service with priority of MyPriority.

RunGameClock

Takes an event as a parameter.

Set update var to ((GAME_END_PULSE - GAME_START_PULSE) * UPDATE_RATE)

/ LENGTH_OF_GAME;

Execute one of the following blocks of code based on the type of the

event passed in:

GAME_START event:

Set CurrentPulseWidth to GAME_START_PULSE

Add update to CurrentPulseWidth

Set pulse of pwm channel for GameClock servo to

CurrentPulseWidth

Start GAME_CLOCK_ROTATE_TIMER with UPDATE_RATE time

ES_TIMEOUT event:

If event param is GAME_CLOCK_ROTATE_TIMER:

Add update to CurrentPulseWidth

Set pulse of pwm channel for GameClock servo to

CurrentPulseWidth

If CurrentPulseWidth is less than GAME_END_PULSE:

Start GAME_CLOCK_ROTATE_TIMER with UPDATE_RATE time

GAME_END event:

Set CurrentPulseWidth to GAME_END_PULSE

Set pulse of pwm channel for GameClock servo to

CurrentPulseWidth

GAME_RESET event:

Set CurrentPulseWidth to GAME_START_PULSE

Set pulse of pwm channel for GameClock servo to

CurrentPulseWidth

Stop GAME_CLOCK_ROTATE_TIMER

AudioService.c

Pseudocode for the AudioService Module (a service that implements a

state machine). This module is for a ​Adafruit AudioFX soundboard.
Data private to this module: MyPriority, CurrentState

InitAudioService

Takes as parameter an integer representing the service priority. Returns

true.

Initialize the MyPriority variable with the passed in parameter.

Set MyPriority to input priority

Get CurrentRegister value

Set all bits corresponding to audio channels high (e.g. AUDIO_1_OFF)

Set CurrentState to WaitingForSignal

Post ES_INIT event to self

PostAudioService

Takes an event as a parameter.

Post input event to ES service with priority of MyPriority.

RunAudioService

Takes an event as a parameter.

Returns ES_NO_EVENT.

If CurrentState is WaitingForSignal:

If event is MEGABLAST

PlayAudio with parameter AlienBlast

Set CurrentState to HoldingLow

Start AUDIO_HOLD_TIMER with AUDIO_DELAY

Else if event is GAME_END

 PlayAudio with parameter Celebration

Set CurrentState to HoldingLow

Start AUDIO_HOLD_TIMER with AUDIO_DELAY

Else if event is ALIEN_BLAST

PlayAudio with parameter ButtonPress

Set CurrentState to HoldingLow

Start AUDIO_HOLD_TIMER with AUDIO_DELAY

Else if CurrentState is HoldingLow:

If event is ES_TIMEOUT of AUDIO_HOLD_TIMER

Call ResetAudioLines

Set CurrentState to WaitingForSignal

PlayAudio

Takes no ClipToPlay parameter, returns nothing.

Pulls corresponding audio pin low on Adafruit soundboard.

If ClipToPlay is AlienBlast

Set audio 1 bit high (e.g. AUDIO_1_ON)

Else if ClipToPlay is Celebration

Set audio 2 bit high (e.g. AUDIO_2_ON)

Else if ClipToPlay is ButtonPress

Set audio 3 bit high (e.g. AUDIO_3_ON)

ResetAudioLine

Takes no parameters, returns nothing.

Pulls all used audio lines high.

Set all audio lines high (e.g. write (AUDIO_1_OFF | AUDIO_2_OFF | …))

MegaBlast.c

Pseudocode for the MegaBlast Module (a service that implements a state

machine)

Data private to the module: CurrentState, MyPriority

InitMegaBlast

Takes as parameter an integer representing the service priority.

Returns true.

Set MyPriority to input priority

Set CurrentState to LightOff

Post ES_INIT event to self

PostMegaBlast

Takes an event as a parameter.

Post input event to ES service with priority of MyPriority.

RunMegaBlast

Takes an event as a parameter.

Returns ES_NO_EVENT.

If event is ​GAME_RESET
Stop MEGABLAST_TIMER

Set CurrentState to BlastInactive

Call LightOff

Else:

If CurrentState is BlastInactive

If event is GAME_START

Start MEGABLAST_TIMER with MEGABLAST_TIME

Else if event is ES_TIMEOUT of MEGABLAST_TIMER

Call LightOn

Set CurrentState to BlastAvailable

Start MEGABLAST_TIMER with BLINK_TIME

Else if CurrentState is BlastAvailable

If event is PALM_COVERED

Set CurrentState to BlastPrimed

Else if event is ES_TIMEOUT of MEGABLAST_TIMER

Call Blink()

Start MEGABLAST_TIMER with BLINK_TIME

Else if CurrentState is BlastPrimed

If event is PALM_UNCOVERED

Set CurrentState to BlastUnavailable

Else if event is LEVERDB_ButtonDown

Post ALIENBLAST event to Lane 1 of AlienFSM

Post ALIENBLAST event to Lane 2 of AlienFSM

Post ALIENBLAST event to Lane 3 of AlienFSM

POST MEGABLAST event to AudioService

Start MEGABLAST_TIMER with MEGABLAST_TIME

Call LightOff()

Set CurrentState to BlastInactive

Else if event is ES_TIMEOUT of MEGABLAST_TIMER

Call Blink()

Start MEGABLAST_TIMER with BLINK_TIME

QueryBlastState

Takes no parameters. Returns CurrentState.

Return CurrentState

LightOn

Takes no parameters, returns nothing.

Get CurrentRegister value

Create SetMask by left shifting 0x1 by MB_LIGHT_PIN_OFFSET

Set CurrentRegister to have light pin on, using set mask

LightOff

Takes no parameters, returns nothing.

Get CurrentRegister value

Create ClearMask by left shifting 0x1 by MB_LIGHT_PIN_OFFSET and inverting

Set CurrentRegister to have light pin off, using clear mask

Blink

Takes no parameters, returns nothing.

Initialize static LightStateVariable to 0

InvertLightState to determine NewLightState

If NewLightState is on

Call LightOn()

If NewLightState is off

Call LightOff()

ShiftRegister.c

Pseudocode for the module that acts as the low level interface to a

write-only shift register.

Data private to the module: LocalRegisterImage

SR_Init

Takes no parameters, returns nothing.

Set PB0, PB1, and PB2 to be data output

Write data and SCLK to lo, RCLK to hi

SR_GetCurrentRegister

Takes no parameters, returns LocalRegisterImage

Return LocalRegisterImage

SR_Write

Takes uint32_t NewValue as input, returns nothing.

Set LocalRegisterImage to NewValue

Lower register clock

For each bit in NewValue

If bit31 of NewValue is high, write data to HI

Else write data to LO

Raise shift clock

Lower shift clock

Left shift NewValue by 1

Raise RCLK to HI to latch new data

LaneSelection.c

InitLaneSelectionFSM

Takes a priority number, returns True.

Initialize the MyPriority variable with the passed in parameter.

Initialize PWM periods for groups

Set CurrentState to be LanesOff

Set all LaneSelection LEDs to be off

Post Event ES_INIT to LaneSelectionFSM queue (this service)

End of InitLaneSelectionFSM

PostLaneSelectionFSM

Post an event to LaneSelectionFSM queue (this service)

End of PostLaneSelectionFSM

RunLaneSelectionFSM

The EventType field of ThisEvent will be one of: GAME_START,

LaneAimed, LEDBrightnessChange, GAME_RESET. The parameter field of

LaneAimed event will be an integer between 0-3 indicating which lane

is aimed or none of the lane is aimed. The parameter field of

LEDBrightnessChange will be a value between 0-4095 which is read from

the analog input.

Returns ES_NO_EVENT

Local Variables: CurrentPins

Get a copy of the 32-bit shift register value and store in

CurrentPins

Based on the state of the CurrentState variable choose one of the

following blocks of code:

CurrentState is LanesOff

Call InitializeLanes()

If ThisEvent is GAME_START

Set CurrentState to LaneEmpty

Endif

End LanesOff block

CurrentState is not LanesOff

If ThisEvent is LaneAimed

If EventParameter is 1

Mask CurrentPins with Lane1LEDStripe pin high

to SR_Write

Set CurrentState to LaneOne

Elseif EventParameter is 2

Mask CurrentPins with Lane2LEDStrip pin high to

SR_Write

Set CurrentState to LaneTwo

Elseif EventParameter is 3

Mask CurrentPins with Lane3LEDStrip pin high to

SR_Write

Set CurrentState to LaneThree

Else

Mask CurrentPins with all three LaneLEDStrip

pins low to SR_Write

Set CurrentState to LaneEmpty

Endif

Elseif ThisEvent is LEDBrightnessChange

Set PWM duty to each LaneSelectionLED pin

according to the value of EventParameter

Endif

End (not LanesOff) block

If ThisEvent is GAME_RESET

Mask CurrentPins with all three LaneLEDStrip pins low to

SR_Write

Set CurrentState to LanesOff

Set PWM duty to 0 for all three LaneSelectionLED pins

Endif

Return ES_NO_EVENT

End of RunLaneSelectionFSM

QueryLaneSelectionFSM

Return the current state of LaneSelection state machine

End of QueryLaneSelectionFSM

InitializeLanes

Local Variables: ADResults

Read analog inputs and store to ADResults

If reading OK for Lane1

Post LaneAimed event with EventParameter 1 to LaneSelectionFSM

Elseif reading OK for Lane2

Post LaneAimed event with EventParameter 2 to LaneSelectionFSM

Elseif reading OK for Lane3

Post LaneAimed event with EventParameter 3 to LaneSelectionFSM

Else

Post LaneAimed event with EventParameter 0 to LaneSelectionFSM

Endif

End of InitializeLanes

ButtonSwitchService.c

InitButtonSwitchDebounceService

Initialize the MyPriority variable with the passed in parameter

Set direction of two buttons and one switch pinout to be input

Set CurrentState for all three button/switch to Debouncing

Start all three debounce timers (timer posts to

ButtonSwitchDebounceService)

Post Event ES_INIT to ButtonSwitchDebounceService queue (this

service)

End of InitButtonSwitchDebounceService

PostButtonSwitchDebounceService

Post an event to ButtonSwitchDebounceService queue (this service)

End of PostButtonSwitchDebounceService

RunButtonSwitchDebounceService

The EventType field of ThisEvent will be one of: ES_TIMEOUT,

ButtonUp, ButtonDown. The parameter field of ES_TIMEOUT event will be

one of the three debounce timers. The parameter field of ButtonUp and

ButtonDown events will be 1 or 2 or 3.

Returns ES_NO_EVENT

The following code repeats for the rest FIRE button and LEVER switch

-

Based on the state of the CurrentWaterState variable choose one of

the following blocks of code:

CurrentWaterState is Debouncing

If ThisEvent is ES_TIMEOUT and EventParameter is

WATER_DEBOUNCE_TIMER

Set CurrentWaterState to Ready2Sample

Endif

End of Debouncing block

CurrentWaterState is Ready2Sample

If ThisEvent is ButtonUp and EventParameter is 2

Set CurrentWaterState to Debouncing

Elseif ThisEvent is ButtonDown and EventParameter is 2

Set CurrentWaterState to Debouncing

Post WATERDB_ButtonDown event to GamePlay service

Endif

End of Ready2Sample block

Return ES_NO_EVENT

End of RunButtonSwitchDebounceService

